OpenAI Adapter
Please ensure OpenAI library is version 1.0.0 or higher; otherwise, refer to the older doc OpenAI Adapter(Old).
A lot of people get started with OpenAI but want to explore other models. LangChainโs integrations with many model providers make this easy to do so. While LangChain has itโs own message and model APIs, weโve also made it as easy as possible to explore other models by exposing an adapter to adapt LangChain models to the OpenAI api.
At the moment this only deals with output and does not return other information (token counts, stop reasons, etc).
import openai
from langchain_community.adapters import openai as lc_openai
API Reference:
chat.completions.createโ
messages = [{"role": "user", "content": "hi"}]
Original OpenAI call
result = openai.chat.completions.create(
messages=messages, model="gpt-3.5-turbo", temperature=0
)
result.choices[0].message.model_dump()
{'content': 'Hello! How can I assist you today?',
'role': 'assistant',
'function_call': None,
'tool_calls': None}
LangChain OpenAI wrapper call
lc_result = lc_openai.chat.completions.create(
messages=messages, model="gpt-3.5-turbo", temperature=0
)
lc_result.choices[0].message # Attribute access
{'role': 'assistant', 'content': 'Hello! How can I help you today?'}
lc_result["choices"][0]["message"] # Also compatible with index access
{'role': 'assistant', 'content': 'Hello! How can I help you today?'}
Swapping out model providers
lc_result = lc_openai.chat.completions.create(
messages=messages, model="claude-2", temperature=0, provider="ChatAnthropic"
)
lc_result.choices[0].message
{'role': 'assistant', 'content': 'Hello! How can I assist you today?'}
chat.completions.streamโ
Original OpenAI call
for c in openai.chat.completions.create(
messages=messages, model="gpt-3.5-turbo", temperature=0, stream=True
):
print(c.choices[0].delta.model_dump())
{'content': '', 'function_call': None, 'role': 'assistant', 'tool_calls': None}
{'content': 'Hello', 'function_call': None, 'role': None, 'tool_calls': None}
{'content': '!', 'function_call': None, 'role': None, 'tool_calls': None}
{'content': ' How', 'function_call': None, 'role': None, 'tool_calls': None}
{'content': ' can', 'function_call': None, 'role': None, 'tool_calls': None}
{'content': ' I', 'function_call': None, 'role': None, 'tool_calls': None}
{'content': ' assist', 'function_call': None, 'role': None, 'tool_calls': None}
{'content': ' you', 'function_call': None, 'role': None, 'tool_calls': None}
{'content': ' today', 'function_call': None, 'role': None, 'tool_calls': None}
{'content': '?', 'function_call': None, 'role': None, 'tool_calls': None}
{'content': None, 'function_call': None, 'role': None, 'tool_calls': None}
LangChain OpenAI wrapper call
for c in lc_openai.chat.completions.create(
messages=messages, model="gpt-3.5-turbo", temperature=0, stream=True
):
print(c.choices[0].delta)
{'role': 'assistant', 'content': ''}
{'content': 'Hello'}
{'content': '!'}
{'content': ' How'}
{'content': ' can'}
{'content': ' I'}
{'content': ' assist'}
{'content': ' you'}
{'content': ' today'}
{'content': '?'}
{}
Swapping out model providers
for c in lc_openai.chat.completions.create(
messages=messages,
model="claude-2",
temperature=0,
stream=True,
provider="ChatAnthropic",
):
print(c["choices"][0]["delta"])
{'role': 'assistant', 'content': ''}
{'content': 'Hello'}
{'content': '!'}
{'content': ' How'}
{'content': ' can'}
{'content': ' I'}
{'content': ' assist'}
{'content': ' you'}
{'content': ' today'}
{'content': '?'}
{}