Azure AI Data
Azure AI Studio provides the capability to upload data assets to cloud storage and register existing data assets from the following sources:
Microsoft OneLake
Azure Blob Storage
Azure Data Lake gen 2
The benefit of this approach over AzureBlobStorageContainerLoader
and
AzureBlobStorageFileLoader
is that authentication is handled
seamlessly to cloud storage. You can use either identity-based data
access control to the data or credential-based (e.g. SAS token,
account key). In the case of credential-based data access you do not
need to specify secrets in your code or set up key vaults - the system
handles that for you.
This notebook covers how to load document objects from a data asset in AI Studio.
%pip install --upgrade --quiet azureml-fsspec, azure-ai-generative
from azure.ai.resources.client import AIClient
from azure.identity import DefaultAzureCredential
from langchain_community.document_loaders import AzureAIDataLoader
API Reference:
# Create a connection to your project
client = AIClient(
credential=DefaultAzureCredential(),
subscription_id="<subscription_id>",
resource_group_name="<resource_group_name>",
project_name="<project_name>",
)
# get the latest version of your data asset
data_asset = client.data.get(name="<data_asset_name>", label="latest")
# load the data asset
loader = AzureAIDataLoader(url=data_asset.path)
loader.load()
[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpaa9xl6ch/fake.docx'}, lookup_index=0)]
Specifying a glob pattern
You can also specify a glob pattern for more finegrained control over
what files to load. In the example below, only files with a pdf
extension will be loaded.
loader = AzureAIDataLoader(url=data_asset.path, glob="*.pdf")
loader.load()
[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpujbkzf_l/fake.docx'}, lookup_index=0)]