Azure AI Document Intelligence
Azure AI Document Intelligence (formerly known as
Azure Form Recognizer
) is machine-learning based service that extracts texts (including handwriting), tables, document structures (e.g., titles, section headings, etc.) and key-value-pairs from digital or scanned PDFs, images, Office and HTML files.Document Intelligence supports
JPEG/JPG
,PNG
,BMP
,TIFF
,HEIF
,DOCX
,XLSX
,PPTX
andHTML
.
This current implementation of a loader using Document Intelligence
can incorporate content page-wise and turn it into LangChain documents.
The default output format is markdown, which can be easily chained with
MarkdownHeaderTextSplitter
for semantic document chunking. You can
also use mode="single"
or mode="page"
to return pure texts in a
single page or document split by page.
Prerequisiteβ
An Azure AI Document Intelligence resource in one of the 3 preview
regions: East US, West US2, West Europe - follow this
document
to create one if you donβt have. You will be passing <endpoint>
and
<key>
as parameters to the loader.
%pip install --upgrade --quiet langchain langchain-community azure-ai-documentintelligence
Example 1β
The first example uses a local file which will be sent to Azure AI Document Intelligence.
With the initialized document analysis client, we can proceed to create an instance of the DocumentIntelligenceLoader:
from langchain_community.document_loaders import AzureAIDocumentIntelligenceLoader
file_path = "<filepath>"
endpoint = "<endpoint>"
key = "<key>"
loader = AzureAIDocumentIntelligenceLoader(
api_endpoint=endpoint, api_key=key, file_path=file_path, api_model="prebuilt-layout"
)
documents = loader.load()
API Reference:
The default output contains one LangChain document with markdown format content:
documents
Example 2β
The input file can also be a public URL path. E.g., https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png.
url_path = "<url>"
loader = AzureAIDocumentIntelligenceLoader(
api_endpoint=endpoint, api_key=key, url_path=url_path, api_model="prebuilt-layout"
)
documents = loader.load()
documents
Example 3β
You can also specify mode="page"
to load document by pages.
from langchain_community.document_loaders import AzureAIDocumentIntelligenceLoader
file_path = "<filepath>"
endpoint = "<endpoint>"
key = "<key>"
loader = AzureAIDocumentIntelligenceLoader(
api_endpoint=endpoint,
api_key=key,
file_path=file_path,
api_model="prebuilt-layout",
mode="page",
)
documents = loader.load()
API Reference:
The output will be each page stored as a separate document in the list:
for document in documents:
print(f"Page Content: {document.page_content}")
print(f"Metadata: {document.metadata}")
Example 4β
You can also specify analysis_feature=["ocrHighResolution"]
to enable
add-on capabilities. For more information, see:
https://aka.ms/azsdk/python/documentintelligence/analysisfeature.
from langchain_community.document_loaders import AzureAIDocumentIntelligenceLoader
file_path = "<filepath>"
endpoint = "<endpoint>"
key = "<key>"
analysis_features = ["ocrHighResolution"]
loader = AzureAIDocumentIntelligenceLoader(
api_endpoint=endpoint,
api_key=key,
file_path=file_path,
api_model="prebuilt-layout",
analysis_features=analysis_features,
)
documents = loader.load()
API Reference:
The output contains the LangChain document recognized with high resolution add-on capability:
documents