Google Firestore (Native Mode)
Firestore is a serverless document-oriented database that scales to meet any demand. Extend your database application to build AI-powered experiences leveraging Firestoreβs Langchain integrations.
This notebook goes over how to use
Firestore to save, load and
delete langchain
documents with
FirestoreLoader
and FirestoreSaver
.
Learn more about the package on GitHub.
Open In Colab
Before You Beginβ
To run this notebook, you will need to do the following:
After confirmed access to database in the runtime environment of this notebook, filling the following values and run the cell before running example scripts.
# @markdown Please specify a source for demo purpose.
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"}
π¦π Library Installationβ
The integration lives in its own langchain-google-firestore
package,
so we need to install it.
%pip install -upgrade --quiet langchain-google-firestore
Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.
# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)
β Set Your Google Cloud Projectβ
Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.
If you donβt know your project ID, try the following:
- Run
gcloud config list
. - Run
gcloud projects list
. - See the support page: Locate the project ID.
# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.
PROJECT_ID = "my-project-id" # @param {type:"string"}
# Set the project id
!gcloud config set project {PROJECT_ID}
π Authenticationβ
Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.
- If you are using Colab to run this notebook, use the cell below and continue.
- If you are using Vertex AI Workbench, check out the setup instructions here.
from google.colab import auth
auth.authenticate_user()
Basic Usageβ
Save documentsβ
FirestoreSaver
can store Documents into Firestore. By default it will
try to extract the Document reference from the metadata
Save langchain documents with
FirestoreSaver.upsert_documents(<documents>)
.
from langchain_core.documents import Document
from langchain_google_firestore import FirestoreSaver
saver = FirestoreSaver()
data = [Document(page_content="Hello, World!")]
saver.upsert_documents(data)
API Reference:
Save documents without referenceβ
If a collection is specified the documents will be stored with an auto generated id.
saver = FirestoreSaver("Collection")
saver.upsert_documents(data)
Save documents with other referencesβ
doc_ids = ["AnotherCollection/doc_id", "foo/bar"]
saver = FirestoreSaver()
saver.upsert_documents(documents=data, document_ids=doc_ids)
Load from Collection or SubCollectionβ
Load langchain documents with FirestoreLoader.load()
or
Firestore.lazy_load()
. lazy_load
returns a generator that only
queries database during the iteration. To initialize FirestoreLoader
class you need to provide:
source
- An instance of a Query, CollectionGroup, DocumentReference or the single\
-delimited path to a Firestore collection.
from langchain_google_firestore import FirestoreLoader
loader_collection = FirestoreLoader("Collection")
loader_subcollection = FirestoreLoader("Collection/doc/SubCollection")
data_collection = loader_collection.load()
data_subcollection = loader_subcollection.load()
Load a single Documentβ
from google.cloud import firestore
client = firestore.Client()
doc_ref = client.collection("foo").document("bar")
loader_document = FirestoreLoader(doc_ref)
data = loader_document.load()
Load from CollectionGroup or Queryβ
from google.cloud.firestore import CollectionGroup, FieldFilter, Query
col_ref = client.collection("col_group")
collection_group = CollectionGroup(col_ref)
loader_group = FirestoreLoader(collection_group)
col_ref = client.collection("collection")
query = col_ref.where(filter=FieldFilter("region", "==", "west_coast"))
loader_query = FirestoreLoader(query)
Delete documentsβ
Delete a list of langchain documents from Firestore collection with
FirestoreSaver.delete_documents(<documents>)
.
If document ids is provided, the Documents will be ignored.
saver = FirestoreSaver()
saver.delete_documents(data)
# The Documents will be ignored and only the document ids will be used.
saver.delete_documents(data, doc_ids)
Advanced Usageβ
Load documents with customize document page content & metadataβ
The arguments of page_content_fields
and metadata_fields
will
specify the Firestore Document fields to be written into LangChain
Document page_content
and metadata
.
loader = FirestoreLoader(
source="foo/bar/subcol",
page_content_fields=["data_field"],
metadata_fields=["metadata_field"],
)
data = loader.load()
Customize Page Content Formatβ
When the page_content
contains only one field the information will be
the field value only. Otherwise the page_content
will be in JSON
format.
Customize Connection & Authenticationβ
from google.auth import compute_engine
from google.cloud.firestore import Client
client = Client(database="non-default-db", creds=compute_engine.Credentials())
loader = FirestoreLoader(
source="foo",
client=client,
)