Google Memorystore for Redis
Google Memorystore for Redis is a fully-managed service that is powered by the Redis in-memory data store to build application caches that provide sub-millisecond data access. Extend your database application to build AI-powered experiences leveraging Memorystore for Redisβs Langchain integrations.
This notebook goes over how to use Memorystore for
Redis
to save, load and delete langchain
documents with
MemorystoreDocumentLoader
and MemorystoreDocumentSaver
.
Learn more about the package on GitHub.
Open In Colab
Before You Beginβ
To run this notebook, you will need to do the following:
- Create a Google Cloud Project
- Enable the Memorystore for Redis API
- Create a Memorystore for Redis instance. Ensure that the version is greater than or equal to 5.0.
After confirmed access to database in the runtime environment of this notebook, filling the following values and run the cell before running example scripts.
# @markdown Please specify an endpoint associated with the instance and a key prefix for demo purpose.
ENDPOINT = "redis://127.0.0.1:6379" # @param {type:"string"}
KEY_PREFIX = "doc:" # @param {type:"string"}
π¦π Library Installationβ
The integration lives in its own langchain-google-memorystore-redis
package, so we need to install it.
%pip install -upgrade --quiet langchain-google-memorystore-redis
Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.
# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)
β Set Your Google Cloud Projectβ
Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.
If you donβt know your project ID, try the following:
- Run
gcloud config list
. - Run
gcloud projects list
. - See the support page: Locate the project ID.
# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.
PROJECT_ID = "my-project-id" # @param {type:"string"}
# Set the project id
!gcloud config set project {PROJECT_ID}
π Authenticationβ
Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.
- If you are using Colab to run this notebook, use the cell below and continue.
- If you are using Vertex AI Workbench, check out the setup instructions here.
from google.colab import auth
auth.authenticate_user()
Basic Usageβ
Save documentsβ
Save langchain documents with
MemorystoreDocumentSaver.add_documents(<documents>)
. To initialize
MemorystoreDocumentSaver
class you need to provide 2 things:
client
- Aredis.Redis
client object.key_prefix
- A prefix for the keys to store Documents in Redis.
The Documents will be stored into randomly generated keys with the
specified prefix of key_prefix
. Alternatively, you can designate the
suffixes of the keys by specifying ids
in the add_documents
method.
import redis
from langchain_core.documents import Document
from langchain_google_memorystore_redis import MemorystoreDocumentSaver
test_docs = [
Document(
page_content="Apple Granny Smith 150 0.99 1",
metadata={"fruit_id": 1},
),
Document(
page_content="Banana Cavendish 200 0.59 0",
metadata={"fruit_id": 2},
),
Document(
page_content="Orange Navel 80 1.29 1",
metadata={"fruit_id": 3},
),
]
doc_ids = [f"{i}" for i in range(len(test_docs))]
redis_client = redis.from_url(ENDPOINT)
saver = MemorystoreDocumentSaver(
client=redis_client,
key_prefix=KEY_PREFIX,
content_field="page_content",
)
saver.add_documents(test_docs, ids=doc_ids)
API Reference:
Load documentsβ
Initialize a loader that loads all documents stored in the Memorystore for Redis instance with a specific prefix.
Load langchain documents with MemorystoreDocumentLoader.load()
or
MemorystoreDocumentLoader.lazy_load()
. lazy_load
returns a generator
that only queries database during the iteration. To initialize
MemorystoreDocumentLoader
class you need to provide:
client
- Aredis.Redis
client object.key_prefix
- A prefix for the keys to store Documents in Redis.
import redis
from langchain_google_memorystore_redis import MemorystoreDocumentLoader
redis_client = redis.from_url(ENDPOINT)
loader = MemorystoreDocumentLoader(
client=redis_client,
key_prefix=KEY_PREFIX,
content_fields=set(["page_content"]),
)
for doc in loader.lazy_load():
print("Loaded documents:", doc)
Delete documentsβ
Delete all of keys with the specified prefix in the Memorystore for
Redis instance with MemorystoreDocumentSaver.delete()
. You can also
specify the suffixes of the keys if you know.
docs = loader.load()
print("Documents before delete:", docs)
saver.delete(ids=[0])
print("Documents after delete:", loader.load())
saver.delete()
print("Documents after delete all:", loader.load())
Advanced Usageβ
Customize Document Page Content & Metadataβ
When initializing a loader with more than 1 content field, the
page_content
of the loaded Documents will contain a JSON-encoded
string with top level fields equal to the specified fields in
content_fields
.
If the metadata_fields
are specified, the metadata
field of the
loaded Documents will only have the top level fields equal to the
specified metadata_fields
. If any of the values of the metadata fields
is stored as a JSON-encoded string, it will be decoded prior to being
loaded to the metadata fields.
loader = MemorystoreDocumentLoader(
client=redis_client,
key_prefix=KEY_PREFIX,
content_fields=set(["content_field_1", "content_field_2"]),
metadata_fields=set(["title", "author"]),
)