Google Spanner
Spanner is a highly scalable database that combines unlimited scalability with relational semantics, such as secondary indexes, strong consistency, schemas, and SQL providing 99.999% availability in one easy solution.
This notebook goes over how to use
Spanner to save, load and delete
langchain documents
with SpannerLoader
and SpannerDocumentSaver
.
Learn more about the package on GitHub.
Open In Colab
Before You Beginβ
To run this notebook, you will need to do the following:
- Create a Google Cloud Project
- Enable the Cloud Spanner API
- Create a Spanner instance
- Create a Spanner database
- Create a Spanner table
After confirmed access to database in the runtime environment of this notebook, filling the following values and run the cell before running example scripts.
# @markdown Please specify an instance id, a database, and a table for demo purpose.
INSTANCE_ID = "test_instance" # @param {type:"string"}
DATABASE_ID = "test_database" # @param {type:"string"}
TABLE_NAME = "test_table" # @param {type:"string"}
π¦π Library Installationβ
The integration lives in its own langchain-google-spanner
package, so
we need to install it.
%pip install -upgrade --quiet langchain-google-spanner langchain
Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.
# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)
β Set Your Google Cloud Projectβ
Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.
If you donβt know your project ID, try the following:
- Run
gcloud config list
. - Run
gcloud projects list
. - See the support page: Locate the project ID.
# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.
PROJECT_ID = "my-project-id" # @param {type:"string"}
# Set the project id
!gcloud config set project {PROJECT_ID}
π Authenticationβ
Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.
- If you are using Colab to run this notebook, use the cell below and continue.
- If you are using Vertex AI Workbench, check out the setup instructions here.
from google.colab import auth
auth.authenticate_user()
Basic Usageβ
Save documentsβ
Save langchain documents with
SpannerDocumentSaver.add_documents(<documents>)
. To initialize
SpannerDocumentSaver
class you need to provide 3 things:
instance_id
- An instance of Spanner to load data from.database_id
- An instance of Spanner database to load data from.table_name
- The name of the table within the Spanner database to store langchain documents.
from langchain_core.documents import Document
from langchain_google_spanner import SpannerDocumentSaver
test_docs = [
Document(
page_content="Apple Granny Smith 150 0.99 1",
metadata={"fruit_id": 1},
),
Document(
page_content="Banana Cavendish 200 0.59 0",
metadata={"fruit_id": 2},
),
Document(
page_content="Orange Navel 80 1.29 1",
metadata={"fruit_id": 3},
),
]
saver = SpannerDocumentSaver(
instance_id=INSTANCE_ID,
database_id=DATABASE_ID,
table_name=TABLE_NAME,
)
saver.add_documents(test_docs)
API Reference:
Querying for Documents from Spannerβ
For more details on connecting to a Spanner table, please check the Python SDK documentation.
Load documents from tableβ
Load langchain documents with SpannerLoader.load()
or
SpannerLoader.lazy_load()
. lazy_load
returns a generator that only
queries database during the iteration. To initialize SpannerLoader
class you need to provide:
instance_id
- An instance of Spanner to load data from.database_id
- An instance of Spanner database to load data from.query
- A query of the database dialect.
from langchain_google_spanner import SpannerLoader
query = f"SELECT * from {TABLE_NAME}"
loader = SpannerLoader(
instance_id=INSTANCE_ID,
database_id=DATABASE_ID,
query=query,
)
for doc in loader.lazy_load():
print(doc)
break
Delete documentsβ
Delete a list of langchain documents from the table with
SpannerDocumentSaver.delete(<documents>)
.
docs = loader.load()
print("Documents before delete:", docs)
doc = test_docs[0]
saver.delete([doc])
print("Documents after delete:", loader.load())
Advanced Usageβ
Custom clientβ
The client created by default is the default client. To pass in
credentials
and project
explicitly, a custom client can be passed to
the constructor.
from google.cloud import spanner
from google.oauth2 import service_account
creds = service_account.Credentials.from_service_account_file("/path/to/key.json")
custom_client = spanner.Client(project="my-project", credentials=creds)
loader = SpannerLoader(
INSTANCE_ID,
DATABASE_ID,
query,
client=custom_client,
)
Customize Document Page Content & Metadataβ
The loader will returns a list of Documents with page content from a specific data columns. All other data columns will be added to metadata. Each row becomes a document.
Customize page content formatβ
The SpannerLoader assumes there is a column called page_content
. These
defaults can be changed like so:
custom_content_loader = SpannerLoader(
INSTANCE_ID, DATABASE_ID, query, content_columns=["custom_content"]
)
If multiple columns are specified, the page contentβs string format will
default to text
(space-separated string concatenation). There are
other format that user can specify, including text
, JSON
, YAML
,
CSV
.
Customize metadata formatβ
The SpannerLoader assumes there is a metadata column called
langchain_metadata
that store JSON data. The metadata column will be
used as the base dictionary. By default, all other column data will be
added and may overwrite the original value. These defaults can be
changed like so:
custom_metadata_loader = SpannerLoader(
INSTANCE_ID, DATABASE_ID, query, metadata_columns=["column1", "column2"]
)
Customize JSON metadata column nameβ
By default, the loader uses langchain_metadata
as the base dictionary.
This can be customized to select a JSON column to use as base dictionary
for the Documentβs metadata.
custom_metadata_json_loader = SpannerLoader(
INSTANCE_ID, DATABASE_ID, query, metadata_json_column="another-json-column"
)
Custom stalenessβ
The default staleness is 15s. This can be customized by specifying a weaker bound (which can either be to perform all reads as of a given timestamp), or as of a given duration in the past.
import datetime
timestamp = datetime.datetime.utcnow()
custom_timestamp_loader = SpannerLoader(
INSTANCE_ID,
DATABASE_ID,
query,
staleness=timestamp,
)
duration = 20.0
custom_duration_loader = SpannerLoader(
INSTANCE_ID,
DATABASE_ID,
query,
staleness=duration,
)
Turn on data boostβ
By default, the loader will not use data boost since it has additional costs associated, and require additional IAM permissions. However, user can choose to turn it on.
custom_databoost_loader = SpannerLoader(
INSTANCE_ID,
DATABASE_ID,
query,
databoost=True,
)
Custom clientβ
The client created by default is the default client. To pass in
credentials
and project
explicitly, a custom client can be passed to
the constructor.
from google.cloud import spanner
custom_client = spanner.Client(project="my-project", credentials=creds)
saver = SpannerDocumentSaver(
INSTANCE_ID,
DATABASE_ID,
TABLE_NAME,
client=custom_client,
)
Custom initialization for SpannerDocumentSaverβ
The SpannerDocumentSaver allows custom initialization. This allows user to specify how the Document is saved into the table.
content_column: This will be used as the column name for the Documentβs
page content. Defaulted to page_content
.
metadata_columns: These metadata will be saved into specific columns if the key exists in the Documentβs metadata.
metadata_json_column: This will be the column name for the spcial JSON
column. Defaulted to langchain_metadata
.
custom_saver = SpannerDocumentSaver(
INSTANCE_ID,
DATABASE_ID,
TABLE_NAME,
content_column="my-content",
metadata_columns=["foo"],
metadata_json_column="my-special-json-column",
)
Initialize custom schema for Spannerβ
The SpannerDocumentSaver will have a init_document_table
method to
create a new table to store docs with custom schema.
from langchain_google_spanner import Column
new_table_name = "my_new_table"
SpannerDocumentSaver.init_document_table(
INSTANCE_ID,
DATABASE_ID,
new_table_name,
content_column="my-page-content",
metadata_columns=[
Column("category", "STRING(36)", True),
Column("price", "FLOAT64", False),
],
)