Microsoft PowerPoint
Microsoft PowerPoint is a presentation program by Microsoft.
This covers how to load Microsoft PowerPoint
documents into a document
format that we can use downstream.
from langchain_community.document_loaders import UnstructuredPowerPointLoader
API Reference:
loader = UnstructuredPowerPointLoader("example_data/fake-power-point.pptx")
data = loader.load()
data
[Document(page_content='Adding a Bullet Slide\n\nFind the bullet slide layout\n\nUse _TextFrame.text for first bullet\n\nUse _TextFrame.add_paragraph() for subsequent bullets\n\nHere is a lot of text!\n\nHere is some text in a text box!', metadata={'source': 'example_data/fake-power-point.pptx'})]
Retain Elementsβ
Under the hood, Unstructured
creates different βelementsβ for
different chunks of text. By default we combine those together, but you
can easily keep that separation by specifying mode="elements"
.
loader = UnstructuredPowerPointLoader(
"example_data/fake-power-point.pptx", mode="elements"
)
data = loader.load()
data[0]
Document(page_content='Adding a Bullet Slide', lookup_str='', metadata={'source': 'example_data/fake-power-point.pptx'}, lookup_index=0)
Using Azure AI Document Intelligenceβ
Azure AI Document Intelligence (formerly known as
Azure Form Recognizer
) is machine-learning based service that extracts texts (including handwriting), tables, document structures (e.g., titles, section headings, etc.) and key-value-pairs from digital or scanned PDFs, images, Office and HTML files.Document Intelligence supports
JPEG/JPG
,PNG
,BMP
,TIFF
,HEIF
,DOCX
,XLSX
,PPTX
andHTML
.
This current implementation of a loader using Document Intelligence
can incorporate content page-wise and turn it into LangChain documents.
The default output format is markdown, which can be easily chained with
MarkdownHeaderTextSplitter
for semantic document chunking. You can
also use mode="single"
or mode="page"
to return pure texts in a
single page or document split by page.
Prerequisiteβ
An Azure AI Document Intelligence resource in one of the 3 preview
regions: East US, West US2, West Europe - follow this
document
to create one if you donβt have. You will be passing <endpoint>
and
<key>
as parameters to the loader.
%pip install --upgrade --quiet langchain langchain-community azure-ai-documentintelligence
from langchain_community.document_loaders import AzureAIDocumentIntelligenceLoader
file_path = "<filepath>"
endpoint = "<endpoint>"
key = "<key>"
loader = AzureAIDocumentIntelligenceLoader(
api_endpoint=endpoint, api_key=key, file_path=file_path, api_model="prebuilt-layout"
)
documents = loader.load()