Milvus
Milvus is a database that stores, indexes, and manages massive embedding vectors generated by deep neural networks and other machine learning (ML) models.
In the walkthrough, we’ll demo the SelfQueryRetriever
with a Milvus
vector store.
Creating a Milvus vectorstore
First we’ll want to create a Milvus VectorStore and seed it with some data. We’ve created a small demo set of documents that contain summaries of movies.
I have used the cloud version of Milvus, thus I need uri
and token
as well.
NOTE: The self-query retriever requires you to have lark
installed
(pip install lark
). We also need the pymilvus
package.
%pip install --upgrade --quiet lark
%pip install --upgrade --quiet pymilvus
We want to use OpenAIEmbeddings
so we have to get the OpenAI API Key.
import os
OPENAI_API_KEY = "Use your OpenAI key:)"
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
from langchain_community.vectorstores import Milvus
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
API Reference:
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "action"},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "genre": "thriller", "rating": 8.2},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "rating": 8.3, "genre": "drama"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={"year": 1979, "rating": 9.9, "genre": "science fiction"},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "genre": "thriller", "rating": 9.0},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated", "rating": 9.3},
),
]
vector_store = Milvus.from_documents(
docs,
embedding=embeddings,
connection_args={"uri": "Use your uri:)", "token": "Use your token:)"},
)
Creating our self-querying retriever
Now we can instantiate our retriever. To do this we’ll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents.
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vector_store, document_content_description, metadata_field_info, verbose=True
)
API Reference:
Testing it out
And now we can try actually using our retriever!
# This example only specifies a relevant query
retriever.invoke("What are some movies about dinosaurs")
query='dinosaur' filter=None limit=None
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'action'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'rating': 9.3, 'genre': 'animated'}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'genre': 'science fiction'}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'rating': 9.0, 'genre': 'thriller'})]
# This example specifies a filter
retriever.invoke("What are some highly rated movies (above 9)?")
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=9) limit=None
[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'rating': 9.3, 'genre': 'animated'}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'genre': 'science fiction'})]
# This example only specifies a query and a filter
retriever.invoke("I want to watch a movie about toys rated higher than 9")
query='toys' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=9) limit=None
[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'rating': 9.3, 'genre': 'animated'}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'genre': 'science fiction'})]
# This example specifies a composite filter
retriever.invoke("What's a highly rated (above or equal 9) thriller film?")
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='thriller'), Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='rating', value=9)]) limit=None
[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'rating': 9.0, 'genre': 'thriller'})]
# This example specifies a query and composite filter
retriever.invoke(
"What's a movie after 1990 but before 2005 that's all about dinosaurs, \
and preferably has a lot of action"
)
query='dinosaur' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='action')]) limit=None
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'action'})]
Filter k
We can also use the self query retriever to specify k
: the number of
documents to fetch.
We can do this by passing enable_limit=True
to the constructor.
retriever = SelfQueryRetriever.from_llm(
llm,
vector_store,
document_content_description,
metadata_field_info,
verbose=True,
enable_limit=True,
)
# This example only specifies a relevant query
retriever.invoke("What are two movies about dinosaurs?")
query='dinosaur' filter=None limit=2
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'action'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'rating': 9.3, 'genre': 'animated'})]