Google Imagen
Imagen on Vertex AI brings Googleβs state of the art image generative AI capabilities to application developers. With Imagen on Vertex AI, application developers can build next-generation AI products that transform their userβs imagination into high quality visual assets using AI generation, in seconds.
With Imagen on Langchain , You can do the following tasks
- VertexAIImageGeneratorChat : Generate novel images using only a text prompt (text-to-image AI generation).
- VertexAIImageEditorChat : Edit an entire uploaded or generated image with a text prompt.
- VertexAIImageCaptioning : Get text descriptions of images with visual captioning.
- VertexAIVisualQnAChat : Get
answers to a question about an image with Visual Question Answering
(VQA).
- NOTE : Currently we support only only single-turn chat for Visual QnA (VQA)
Image Generationβ
Generate novel images using only a text prompt (text-to-image AI generation)
from langchain_core.messages import AIMessage, HumanMessage
from langchain_google_vertexai.vision_models import VertexAIImageGeneratorChat
API Reference:
# Create Image Gentation model Object
generator = VertexAIImageGeneratorChat()
messages = [HumanMessage(content=["a cat at the beach"])]
response = generator.invoke(messages)
# To view the generated Image
generated_image = response.content[0]
import base64
import io
from PIL import Image
# Parse response object to get base64 string for image
img_base64 = generated_image["image_url"]["url"].split(",")[-1]
# Convert base64 string to Image
img = Image.open(io.BytesIO(base64.decodebytes(bytes(img_base64, "utf-8"))))
# view Image
img
Image Editingβ
Edit an entire uploaded or generated image with a text prompt.
Edit Generated Imageβ
from langchain_core.messages import AIMessage, HumanMessage
from langchain_google_vertexai.vision_models import (
VertexAIImageEditorChat,
VertexAIImageGeneratorChat,
)
API Reference:
# Create Image Gentation model Object
generator = VertexAIImageGeneratorChat()
# Provide a text input for image
messages = [HumanMessage(content=["a cat at the beach"])]
# call the model to generate an image
response = generator.invoke(messages)
# read the image object from the response
generated_image = response.content[0]
# Create Image Editor model Object
editor = VertexAIImageEditorChat()
# Write prompt for editing and pass the "generated_image"
messages = [HumanMessage(content=[generated_image, "a dog at the beach "])]
# Call the model for editing Image
editor_response = editor.invoke(messages)
import base64
import io
from PIL import Image
# Parse response object to get base64 string for image
edited_img_base64 = editor_response.content[0]["image_url"]["url"].split(",")[-1]
# Convert base64 string to Image
edited_img = Image.open(
io.BytesIO(base64.decodebytes(bytes(edited_img_base64, "utf-8")))
)
# view Image
edited_img
Image Captioningβ
from langchain_google_vertexai import VertexAIImageCaptioning
# Initialize the Image Captioning Object
model = VertexAIImageCaptioning()
NOTE : weβre using generated image in Image Generation Section
# use image egenarted in Image Generation Section
img_base64 = generated_image["image_url"]["url"]
response = model.invoke(img_base64)
print(f"Generated Cpation : {response}")
# Convert base64 string to Image
img = Image.open(
io.BytesIO(base64.decodebytes(bytes(img_base64.split(",")[-1], "utf-8")))
)
# display Image
img
Generated Cpation : a cat sitting on the beach looking at the camera
Visual Question Answering (VQA)β
from langchain_google_vertexai import VertexAIVisualQnAChat
model = VertexAIVisualQnAChat()
NOTE : weβre using generated image in Image Generation Section
question = "What animal is shown in the image?"
response = model.invoke(
input=[
HumanMessage(
content=[
{"type": "image_url", "image_url": {"url": img_base64}},
question,
]
)
]
)
print(f"question : {question}\nanswer : {response.content}")
# Convert base64 string to Image
img = Image.open(
io.BytesIO(base64.decodebytes(bytes(img_base64.split(",")[-1], "utf-8")))
)
# display Image
img
question : What animal is shown in the image?
answer : cat