Skip to main content

Astra DB

This page provides a quickstart for using Astra DB as a Vector Store.

DataStax Astra DB is a serverless vector-capable database built on Apache Cassandraยฎ and made conveniently available through an easy-to-use JSON API.

Note: in addition to access to the database, an OpenAI API Key is required to run the full example.

Setup and general dependenciesโ€‹

Use of the integration requires the corresponding Python package:

pip install --upgrade langchain-astradb

*Note. the following are all packages required to run the full demo on this page. Depending on your LangChain setup, some of them may need to be installed:*

pip install langchain langchain-openai datasets pypdf

Import dependenciesโ€‹

import os
from getpass import getpass

from datasets import (
load_dataset,
)
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
os.environ["OPENAI_API_KEY"] = getpass("OPENAI_API_KEY = ")
embe = OpenAIEmbeddings()

Import the Vector Storeโ€‹

from langchain_astradb import AstraDBVectorStore

API Reference:

Connection parametersโ€‹

These are found on your Astra DB dashboard:

  • the API Endpoint looks like https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com
  • the Token looks like AstraCS:6gBhNmsk135....
  • you may optionally provide a Namespace such as my_namespace
ASTRA_DB_API_ENDPOINT = input("ASTRA_DB_API_ENDPOINT = ")
ASTRA_DB_APPLICATION_TOKEN = getpass("ASTRA_DB_APPLICATION_TOKEN = ")

desired_namespace = input("(optional) Namespace = ")
if desired_namespace:
ASTRA_DB_KEYSPACE = desired_namespace
else:
ASTRA_DB_KEYSPACE = None

Now you can create the vector store:

vstore = AstraDBVectorStore(
embedding=embe,
collection_name="astra_vector_demo",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
namespace=ASTRA_DB_KEYSPACE,
)

Load a datasetโ€‹

Convert each entry in the source dataset into a Document, then write them into the vector store:

philo_dataset = load_dataset("datastax/philosopher-quotes")["train"]

docs = []
for entry in philo_dataset:
metadata = {"author": entry["author"]}
doc = Document(page_content=entry["quote"], metadata=metadata)
docs.append(doc)

inserted_ids = vstore.add_documents(docs)
print(f"\nInserted {len(inserted_ids)} documents.")

In the above, metadata dictionaries are created from the source data and are part of the Document.

Note: check the Astra DB API Docs for the valid metadata field names: some characters are reserved and cannot be used.

Add some more entries, this time with add_texts:

texts = ["I think, therefore I am.", "To the things themselves!"]
metadatas = [{"author": "descartes"}, {"author": "husserl"}]
ids = ["desc_01", "huss_xy"]

inserted_ids_2 = vstore.add_texts(texts=texts, metadatas=metadatas, ids=ids)
print(f"\nInserted {len(inserted_ids_2)} documents.")

Note: you may want to speed up the execution of add_texts and add_documents by increasing the concurrency level for these bulk operations - check out the `_concurrencyparameters in the class constructor and theadd_texts` docstrings* for more details. Depending on the network and the client machine specifications, your best-performing choice of parameters may vary.

Run searchesโ€‹

This section demonstrates metadata filtering and getting the similarity scores back:

results = vstore.similarity_search("Our life is what we make of it", k=3)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
results_filtered = vstore.similarity_search(
"Our life is what we make of it",
k=3,
filter={"author": "plato"},
)
for res in results_filtered:
print(f"* {res.page_content} [{res.metadata}]")
results = vstore.similarity_search_with_score("Our life is what we make of it", k=3)
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
results = vstore.max_marginal_relevance_search(
"Our life is what we make of it",
k=3,
filter={"author": "aristotle"},
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")

Asyncโ€‹

Note that the Astra DB vector store supports all fully async methods (asimilarity_search, afrom_texts, adelete and so on) natively, i.e.ย without thread wrapping involved.

Deleting stored documentsโ€‹

delete_1 = vstore.delete(inserted_ids[:3])
print(f"all_succeed={delete_1}") # True, all documents deleted
delete_2 = vstore.delete(inserted_ids[2:5])
print(f"some_succeeds={delete_2}") # True, though some IDs were gone already

A minimal RAG chainโ€‹

The next cells will implement a simple RAG pipeline: - download a sample PDF file and load it onto the store; - create a RAG chain with LCEL (LangChain Expression Language), with the vector store at its heart; - run the question-answering chain.

!curl -L \
"https://github.com/awesome-astra/datasets/blob/main/demo-resources/what-is-philosophy/what-is-philosophy.pdf?raw=true" \
-o "what-is-philosophy.pdf"
pdf_loader = PyPDFLoader("what-is-philosophy.pdf")
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
docs_from_pdf = pdf_loader.load_and_split(text_splitter=splitter)

print(f"Documents from PDF: {len(docs_from_pdf)}.")
inserted_ids_from_pdf = vstore.add_documents(docs_from_pdf)
print(f"Inserted {len(inserted_ids_from_pdf)} documents.")
retriever = vstore.as_retriever(search_kwargs={"k": 3})

philo_template = """
You are a philosopher that draws inspiration from great thinkers of the past
to craft well-thought answers to user questions. Use the provided context as the basis
for your answers and do not make up new reasoning paths - just mix-and-match what you are given.
Your answers must be concise and to the point, and refrain from answering about other topics than philosophy.

CONTEXT:
{context}

QUESTION: {question}

YOUR ANSWER:"""

philo_prompt = ChatPromptTemplate.from_template(philo_template)

llm = ChatOpenAI()

chain = (
{"context": retriever, "question": RunnablePassthrough()}
| philo_prompt
| llm
| StrOutputParser()
)
chain.invoke("How does Russel elaborate on Peirce's idea of the security blanket?")

For more, check out a complete RAG template using Astra DB here.

Cleanupโ€‹

If you want to completely delete the collection from your Astra DB instance, run this.

(You will lose the data you stored in it.)

vstore.delete_collection()

Help us out by providing feedback on this documentation page: