China Mobile ECloud ElasticSearch VectorSearch
China Mobile ECloud VectorSearch is a fully managed, enterprise-level distributed search and analysis service. China Mobile ECloud VectorSearch provides low-cost, high-performance, and reliable retrieval and analysis platform level product services for structured/unstructured data. As a vector database , it supports multiple index types and similarity distance methods.
This notebook shows how to use functionality related to the
ECloud ElasticSearch VectorStore
. To run, you should have an China
Mobile ECloud
VectorSearch
instance up and running:
Read the help document to quickly familiarize and configure China Mobile ECloud ElasticSearch instance.
After the instance is up and running, follow these steps to split documents, get embeddings, connect to the baidu cloud elasticsearch instance, index documents, and perform vector retrieval.
#!pip install elasticsearch == 7.10.1
First, we want to use OpenAIEmbeddings
so we have to get the OpenAI
API Key.
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
Secondly, split documents and get embeddings.
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import EcloudESVectorStore
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
ES_URL = "http://localhost:9200"
USER = "your user name"
PASSWORD = "your password"
indexname = "your index name"
then, index documents
docsearch = EcloudESVectorStore.from_documents(
docs,
embeddings,
es_url=ES_URL,
user=USER,
password=PASSWORD,
index_name=indexname,
refresh_indices=True,
)
Finally, Query and retrive data
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query, k=10)
print(docs[0].page_content)
A commonly used case
def test_dense_float_vectore_lsh_cosine() -> None:
"""
Test indexing with vectore type knn_dense_float_vector and model-similarity of lsh-cosine
this mapping is compatible with model of exact and similarity of l2/cosine
this mapping is compatible with model of lsh and similarity of cosine
"""
docsearch = EcloudESVectorStore.from_documents(
docs,
embeddings,
es_url=ES_URL,
user=USER,
password=PASSWORD,
index_name=indexname,
refresh_indices=True,
text_field="my_text",
vector_field="my_vec",
vector_type="knn_dense_float_vector",
vector_params={"model": "lsh", "similarity": "cosine", "L": 99, "k": 1},
)
docs = docsearch.similarity_search(
query,
k=10,
search_params={
"model": "exact",
"vector_field": "my_vec",
"text_field": "my_text",
},
)
print(docs[0].page_content)
docs = docsearch.similarity_search(
query,
k=10,
search_params={
"model": "exact",
"similarity": "l2",
"vector_field": "my_vec",
"text_field": "my_text",
},
)
print(docs[0].page_content)
docs = docsearch.similarity_search(
query,
k=10,
search_params={
"model": "exact",
"similarity": "cosine",
"vector_field": "my_vec",
"text_field": "my_text",
},
)
print(docs[0].page_content)
docs = docsearch.similarity_search(
query,
k=10,
search_params={
"model": "lsh",
"similarity": "cosine",
"candidates": 10,
"vector_field": "my_vec",
"text_field": "my_text",
},
)
print(docs[0].page_content)
With filter case
def test_dense_float_vectore_exact_with_filter() -> None:
"""
Test indexing with vectore type knn_dense_float_vector and default model/similarity
this mapping is compatible with model of exact and similarity of l2/cosine
"""
docsearch = EcloudESVectorStore.from_documents(
docs,
embeddings,
es_url=ES_URL,
user=USER,
password=PASSWORD,
index_name=indexname,
refresh_indices=True,
text_field="my_text",
vector_field="my_vec",
vector_type="knn_dense_float_vector",
)
# filter={"match_all": {}} ,default
docs = docsearch.similarity_search(
query,
k=10,
filter={"match_all": {}},
search_params={
"model": "exact",
"vector_field": "my_vec",
"text_field": "my_text",
},
)
print(docs[0].page_content)
# filter={"term": {"my_text": "Jackson"}}
docs = docsearch.similarity_search(
query,
k=10,
filter={"term": {"my_text": "Jackson"}},
search_params={
"model": "exact",
"vector_field": "my_vec",
"text_field": "my_text",
},
)
print(docs[0].page_content)
# filter={"term": {"my_text": "president"}}
docs = docsearch.similarity_search(
query,
k=10,
filter={"term": {"my_text": "president"}},
search_params={
"model": "exact",
"similarity": "l2",
"vector_field": "my_vec",
"text_field": "my_text",
},
)
print(docs[0].page_content)