Tigris
Tigris is an open-source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.
Tigris
eliminates the infrastructure complexity of managing, operating, and synchronizing multiple tools, allowing you to focus on building great applications instead.
This notebook guides you how to use Tigris as your VectorStore
Pre requisites 1. An OpenAI account. You can sign up for an account
here 2. Sign up for a free Tigris
account. Once you have signed
up for the Tigris account, create a new project called vectordemo
.
Next, make a note of the Uri for the region youβve created your
project in, the clientId and clientSecret. You can get all this
information from the Application Keys section of the project.
Letβs first install our dependencies:
%pip install --upgrade --quiet tigrisdb openapi-schema-pydantic langchain-openai tiktoken
We will load the OpenAI
api key and Tigris
credentials in our
environment
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
os.environ["TIGRIS_PROJECT"] = getpass.getpass("Tigris Project Name:")
os.environ["TIGRIS_CLIENT_ID"] = getpass.getpass("Tigris Client Id:")
os.environ["TIGRIS_CLIENT_SECRET"] = getpass.getpass("Tigris Client Secret:")
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Tigris
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
API Reference:
Initialize Tigris vector storeβ
Letβs import our test dataset:
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = Tigris.from_documents(docs, embeddings, index_name="my_embeddings")
Similarity Searchβ
query = "What did the president say about Ketanji Brown Jackson"
found_docs = vector_store.similarity_search(query)
print(found_docs)
Similarity Search with score (vector distance)β
query = "What did the president say about Ketanji Brown Jackson"
result = vector_store.similarity_search_with_score(query)
for doc, score in result:
print(f"document={doc}, score={score}")