Defining Custom Tools
When constructing your own agent, you will need to provide it with a list of Tools that it can use. Besides the actual function that is called, the Tool consists of several components:
name
(str), is required and must be unique within a set of tools provided to an agentdescription
(str), is optional but recommended, as it is used by an agent to determine tool useargs_schema
(Pydantic BaseModel), is optional but recommended, can be used to provide more information (e.g., few-shot examples) or validation for expected parameters.
There are multiple ways to define a tool. In this guide, we will walk through how to do for two functions:
- A made up search function that always returns the string “LangChain”
- A multiplier function that will multiply two numbers by eachother
The biggest difference here is that the first function only requires one input, while the second one requires multiple. Many agents only work with functions that require single inputs, so it’s important to know how to work with those. For the most part, defining these custom tools is the same, but there are some differences.
# Import things that are needed generically
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool
API Reference:
@tool decorator
This @tool
decorator is the simplest way to define a custom tool. The
decorator uses the function name as the tool name by default, but this
can be overridden by passing a string as the first argument.
Additionally, the decorator will use the function’s docstring as the
tool’s description - so a docstring MUST be provided.
@tool
def search(query: str) -> str:
"""Look up things online."""
return "LangChain"
print(search.name)
print(search.description)
print(search.args)
search
search(query: str) -> str - Look up things online.
{'query': {'title': 'Query', 'type': 'string'}}
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
print(multiply.name)
print(multiply.description)
print(multiply.args)
multiply
multiply(a: int, b: int) -> int - Multiply two numbers.
{'a': {'title': 'A', 'type': 'integer'}, 'b': {'title': 'B', 'type': 'integer'}}
You can also customize the tool name and JSON args by passing them into the tool decorator.
class SearchInput(BaseModel):
query: str = Field(description="should be a search query")
@tool("search-tool", args_schema=SearchInput, return_direct=True)
def search(query: str) -> str:
"""Look up things online."""
return "LangChain"
print(search.name)
print(search.description)
print(search.args)
print(search.return_direct)
search-tool
search-tool(query: str) -> str - Look up things online.
{'query': {'title': 'Query', 'description': 'should be a search query', 'type': 'string'}}
True
Subclass BaseTool
You can also explicitly define a custom tool by subclassing the BaseTool class. This provides maximal control over the tool definition, but is a bit more work.
from typing import Optional, Type
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
class SearchInput(BaseModel):
query: str = Field(description="should be a search query")
class CalculatorInput(BaseModel):
a: int = Field(description="first number")
b: int = Field(description="second number")
class CustomSearchTool(BaseTool):
name = "custom_search"
description = "useful for when you need to answer questions about current events"
args_schema: Type[BaseModel] = SearchInput
def _run(
self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
return "LangChain"
async def _arun(
self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("custom_search does not support async")
class CustomCalculatorTool(BaseTool):
name = "Calculator"
description = "useful for when you need to answer questions about math"
args_schema: Type[BaseModel] = CalculatorInput
return_direct: bool = True
def _run(
self, a: int, b: int, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
return a * b
async def _arun(
self,
a: int,
b: int,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("Calculator does not support async")
API Reference:
search = CustomSearchTool()
print(search.name)
print(search.description)
print(search.args)
custom_search
useful for when you need to answer questions about current events
{'query': {'title': 'Query', 'description': 'should be a search query', 'type': 'string'}}
multiply = CustomCalculatorTool()
print(multiply.name)
print(multiply.description)
print(multiply.args)
print(multiply.return_direct)
Calculator
useful for when you need to answer questions about math
{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}
True
StructuredTool dataclass
You can also use a StructuredTool
dataclass. This methods is a mix
between the previous two. It’s more convenient than inheriting from the
BaseTool class, but provides more functionality than just using a
decorator.
def search_function(query: str):
return "LangChain"
search = StructuredTool.from_function(
func=search_function,
name="Search",
description="useful for when you need to answer questions about current events",
# coroutine= ... <- you can specify an async method if desired as well
)
print(search.name)
print(search.description)
print(search.args)
Search
Search(query: str) - useful for when you need to answer questions about current events
{'query': {'title': 'Query', 'type': 'string'}}
You can also define a custom args_schema
to provide more information
about inputs.
class CalculatorInput(BaseModel):
a: int = Field(description="first number")
b: int = Field(description="second number")
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
calculator = StructuredTool.from_function(
func=multiply,
name="Calculator",
description="multiply numbers",
args_schema=CalculatorInput,
return_direct=True,
# coroutine= ... <- you can specify an async method if desired as well
)
print(calculator.name)
print(calculator.description)
print(calculator.args)
Calculator
Calculator(a: int, b: int) -> int - multiply numbers
{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}
Handling Tool Errors
When a tool encounters an error and the exception is not caught, the
agent will stop executing. If you want the agent to continue execution,
you can raise a ToolException
and set handle_tool_error
accordingly.
When ToolException
is thrown, the agent will not stop working, but
will handle the exception according to the handle_tool_error
variable
of the tool, and the processing result will be returned to the agent as
observation, and printed in red.
You can set handle_tool_error
to True
, set it a unified string
value, or set it as a function. If it’s set as a function, the function
should take a ToolException
as a parameter and return a str
value.
Please note that only raising a ToolException
won’t be effective. You
need to first set the handle_tool_error
of the tool because its
default value is False
.
from langchain_core.tools import ToolException
def search_tool1(s: str):
raise ToolException("The search tool1 is not available.")
API Reference:
First, let’s see what happens if we don’t set handle_tool_error
- it
will error.
search = StructuredTool.from_function(
func=search_tool1,
name="Search_tool1",
description="A bad tool",
)
search.run("test")
ToolException: The search tool1 is not available.
Now, let’s set handle_tool_error
to be True
search = StructuredTool.from_function(
func=search_tool1,
name="Search_tool1",
description="A bad tool",
handle_tool_error=True,
)
search.run("test")
'The search tool1 is not available.'
We can also define a custom way to handle the tool error
def _handle_error(error: ToolException) -> str:
return (
"The following errors occurred during tool execution:"
+ error.args[0]
+ "Please try another tool."
)
search = StructuredTool.from_function(
func=search_tool1,
name="Search_tool1",
description="A bad tool",
handle_tool_error=_handle_error,
)
search.run("test")
'The following errors occurred during tool execution:The search tool1 is not available.Please try another tool.'